Apple/Metal (hurlant)

IJCLab réunion développement 15 Septembre 2020

2018 :-(

WWDC Juin 2018 : Apple, dans une session //, annonce l'obsolescence de leur OpenGL.

2018:-(

- Mauvaise nouvelle pour les gens voulant un standard pour faire de la visualisation.
- Mauvaise nouvelle pour moi et Geant4, et pour beaucoup de logiciels scientifiques.
- À cause de l'impact d'Apple sur les questions d'interactivité, on ne peut pas ignorer cela...
- Apple fait la promotion de leur librairie propriétaire Metal en remplacement de leur OpenGL sur leurs appareils. On doit regarder!
- (Pas de date donnée pour un enlèvement en dur d'Apple-OpenGL sur macOS et iOS).

logique de graphes de scène inlib/exlib/sg

- Dans l'esprit, même logique que le grand OpenInventor.
- Une scène est décrite par un graphe de "nodes" dans lequel, par exemple, un cube rouge tourné est décrit par un "matrix node", un "color node" et un "shape node".
- Un graphe est rendu sur l'écran (ou offscreen!) en utilisant l'implémentation d'un "renderer" pour une technologie de graphique donnée, par exemple GL-ES.
- Voir softinex à http://gbarrand.github.io

inlib/exlib/sg renderers

- GL-ES: cela permet (aujourd'hui) avec le MÊME CODE de visualiser sur Linux, macOS, Windows, iOS, Android.
- offscreen : pour produire un fichier .png, .jpeg, .ps, .pdf sans avoir à se lier à aucun système graphique (c'est du pur code C/C++ basé sur les librairies STD/STL).
- wasm: une version web assembly (utilisant WebGL). Cela permet de visualiser sur tous les web browsers du moment (y compris sur iOS et Android).
- Donc je dois fair un renderer pour Apple/Metal...

Pas si facile que ça à faire!

- L'API est en Objective-C ou en Swift (le langage "meilleur que Python", dixit Apple :-)).
- Les exemples d'Apple sont en Swift constructibles avec Xcode.
- Rien en C++ constructible depuis un "simple makefile".
- Bloqué...

...jusqu'à la fin du mois de Juin 2020

- Un nième googling désespéré m'a donné un hit sur GitHub: naleksiev/mtlpp
- mtlpp: un C++ wrapper pour Metal
- avec, important, un exemple pour dessiner un triangle constructible avec make : bingo!
- (Comme dit un vieux (ben oui) proverbe LALois : donnez moi un triangle et je visualiserai le monde).

Été 2020 à la forge...

- Après deux mois de codage très pénible, j'ai maintenant une application (l'event display pour ESSnu) qui marche sur macOS.
- Et ceci en utilisant directement l'API Objective-C de Metal depuis du C++ (Apple clang permet de mixer les deux langages).
- Et ce sans librairies tierces.
- (Cela suit mon "software least action principle").
- Pénible car la logique de Metal n'est pas la même que GL-ES, même si les idées de "rendering pipline", buffers", etc... sont les mêmes. On doit repenser un nouveau renderer (ce qui n'était pas le cas pour les renderers offscreen et wasm).

Été 2020 à la forge... (2)

- J'ai maintenant un rendu 3D pour les primitives de base (points, lignes, segments, triangles, triangle-fan and strip).
- J'ai l'éclairage. (Je vois la lumière : enfin!)
- J'ai aussi le texture mapping.
- (Rappel: pas de gestion de texte, ni dans OpenGL, ni dans Metal)
- Avec cela mes apps fonctionnent (y compris le GUI, puisque fait avec inlib/sg)

Et soyez sûr que cela n'a pas été facile à avoir!

Et donc "ouf"!

- Je dois faire une version iOS (windowing API pas pareil que sur macOS)
- En Principe je suis prêt pour ce qu'Apple nous prépare dans le futur.
- (Je suppute fortement qu'ils vont enlever leur OpenGL lors de la mise à jour macOS supportant leur processeur Ax pour les Macs).

Est ce que cela peut aider pour Geant4?

- Mes apps g4exa, g4view devraient tourner avec Metal, et je vais faire des mises à jour pour celles ci.
- Mais elles ne sont pas basées sur le "G4 vis system" largement utilisé world wide.
- Le G4/vis système est en principe conçu pour gérer plusieurs systèmes graphiques hétérogènes (= drivers).
- Par exemple il y a un driver OpenInventor et des drivers offscreens (HepRep, VRML).

Est ce que cela peut aider pour Geant4? (2)

- Pour le moment ce qui est promu par Geant4 est Qt pour le GUI et le "vieux" OpenGL (même pas GL-ES) pour le graphique.
- Pas si clair comment avancer...
- Peut-on mixer du Qt avec QWidget faisant du Metal ? Cela demanderait une programmation spéciale pour macOS/iOS : beaucoup de travail.
- •Une librairie Qt-vis ayant un QMetal renderer en dessous pour macOS, iOS? Cela demanderait d'avoir un G4 "Q-vis-lib" driver : beaucoup de travail.
- Un driver inlib/exlib ? beaucoup de travail. (Sachant que mes très grandes vacances pointent à l'horizon).

En attendant...

- Je vais releaser mon code et apps. (Il y a probablement très peu d'applis scientifiques C++ tournant directement sur Metal en ce moment).
- Cela mériterait un papier dans un futur C(OVID)HEP (probablement mon dernier papier "R&D").
- Ce qui est sûr c'est que suis impatient de avoir ce qu'Apple nous réserve dans les prochaines années...
- Et à ce propos, il y a keynote ce soir à 19h...