g4tools  5.4.0
sweep
Go to the documentation of this file.
1 // see license file for original license.
2 
3 #ifndef tools_glutess_sweep
4 #define tools_glutess_sweep
5 
6 #include "mesh"
7 #include "dict"
8 
9 /* For each pair of adjacent edges crossing the sweep line, there is
10  * an ActiveRegion to represent the region between them. The active
11  * regions are kept in sorted order in a dynamic dictionary. As the
12  * sweep line crosses each vertex, we update the affected regions.
13  */
14 
15 struct ActiveRegion {
16  GLUhalfEdge *eUp; /* upper edge, directed right to left */
17  DictNode *nodeUp; /* dictionary node corresponding to eUp */
18  int windingNumber; /* used to determine which regions are
19  * inside the polygon */
20  GLUboolean inside; /* is this region inside the polygon? */
21  GLUboolean sentinel; /* marks fake edges at t = +/-infinity */
22  GLUboolean dirty; /* marks regions where the upper or lower
23  * edge has changed, but we haven't checked
24  * whether they intersect yet */
25  GLUboolean fixUpperEdge; /* marks temporary edges introduced when
26  * we process a "right vertex" (one without
27  * any edges leaving to the right) */
28 };
29 
30 #define RegionBelow(r) ((ActiveRegion *) dictKey(dictPred((r)->nodeUp)))
31 #define RegionAbove(r) ((ActiveRegion *) dictKey(dictSucc((r)->nodeUp)))
32 
36 
37 #include "geom"
38 #include "_tess"
39 #include "priorityq"
40 
41 #define DebugEvent( tess )
42 
43 /*
44  * Invariants for the Edge Dictionary.
45  * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2)
46  * at any valid location of the sweep event
47  * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2
48  * share a common endpoint
49  * - for each e, e->Dst has been processed, but not e->Org
50  * - each edge e satisfies VertLeq(e->Dst,event) && VertLeq(event,e->Org)
51  * where "event" is the current sweep line event.
52  * - no edge e has zero length
53  *
54  * Invariants for the Mesh (the processed portion).
55  * - the portion of the mesh left of the sweep line is a planar graph,
56  * ie. there is *some* way to embed it in the plane
57  * - no processed edge has zero length
58  * - no two processed vertices have identical coordinates
59  * - each "inside" region is monotone, ie. can be broken into two chains
60  * of monotonically increasing vertices according to VertLeq(v1,v2)
61  * - a non-invariant: these chains may intersect (very slightly)
62  *
63  * Invariants for the Sweep.
64  * - if none of the edges incident to the event vertex have an activeRegion
65  * (ie. none of these edges are in the edge dictionary), then the vertex
66  * has only right-going edges.
67  * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced
68  * by ConnectRightVertex), then it is the only right-going edge from
69  * its associated vertex. (This says that these edges exist only
70  * when it is necessary.)
71  */
72 
73 /* When we merge two edges into one, we need to compute the combined
74  * winding of the new edge.
75  */
76 #define AddWinding(eDst,eSrc) (eDst->winding += eSrc->winding, \
77  eDst->Sym->winding += eSrc->Sym->winding)
78 
79 inline/*static*/ void static_SweepEvent( GLUtesselator *tess, GLUvertex *vEvent );
80 inline/*static*/ void static_WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp );
81 inline/*static*/ int static_CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp );
82 
83 inline/*static*/ int static_EdgeLeq( GLUtesselator *tess, ActiveRegion *reg1,
84  ActiveRegion *reg2 )
85 /*
86  * Both edges must be directed from right to left (this is the canonical
87  * direction for the upper edge of each region).
88  *
89  * The strategy is to evaluate a "t" value for each edge at the
90  * current sweep line position, given by tess->event. The calculations
91  * are designed to be very stable, but of course they are not perfect.
92  *
93  * Special case: if both edge destinations are at the sweep event,
94  * we sort the edges by slope (they would otherwise compare equally).
95  */
96 {
97  GLUvertex *event = tess->event;
98  GLUhalfEdge *e1, *e2;
99  GLUdouble t1, t2;
100 
101  e1 = reg1->eUp;
102  e2 = reg2->eUp;
103 
104  if( e1->Dst == event ) {
105  if( e2->Dst == event ) {
106  /* Two edges right of the sweep line which meet at the sweep event.
107  * Sort them by slope.
108  */
109  if( VertLeq( e1->Org, e2->Org )) {
110  return EdgeSign( e2->Dst, e1->Org, e2->Org ) <= 0;
111  }
112  return EdgeSign( e1->Dst, e2->Org, e1->Org ) >= 0;
113  }
114  return EdgeSign( e2->Dst, event, e2->Org ) <= 0;
115  }
116  if( e2->Dst == event ) {
117  return EdgeSign( e1->Dst, event, e1->Org ) >= 0;
118  }
119 
120  /* General case - compute signed distance *from* e1, e2 to event */
121  t1 = EdgeEval( e1->Dst, event, e1->Org );
122  t2 = EdgeEval( e2->Dst, event, e2->Org );
123  return (t1 >= t2);
124 }
125 
126 
127 inline/*static*/ void static_DeleteRegion( GLUtesselator *tess, ActiveRegion *reg )
128 {
129  if( reg->fixUpperEdge ) {
130  /* It was created with zero winding number, so it better be
131  * deleted with zero winding number (ie. it better not get merged
132  * with a real edge).
133  */
134  assert( reg->eUp->winding == 0 );
135  }
136  reg->eUp->activeRegion = NULL;
137  dictDelete( tess->dict, reg->nodeUp ); /* __gl_dictListDelete */
138  memFree( reg );
139 }
140 
141 
142 inline/*static*/ int static_FixUpperEdge( ActiveRegion *reg, GLUhalfEdge *newEdge )
143 /*
144  * Replace an upper edge which needs fixing (see ConnectRightVertex).
145  */
146 {
147  assert( reg->fixUpperEdge );
148  if ( !__gl_meshDelete( reg->eUp ) ) return 0;
150  reg->eUp = newEdge;
151  newEdge->activeRegion = reg;
152 
153  return 1;
154 }
155 
157 {
158  GLUvertex *org = reg->eUp->Org;
159  GLUhalfEdge *e;
160 
161  /* Find the region above the uppermost edge with the same origin */
162  do {
163  reg = RegionAbove( reg );
164  } while( reg->eUp->Org == org );
165 
166  /* If the edge above was a temporary edge introduced by ConnectRightVertex,
167  * now is the time to fix it.
168  */
169  if( reg->fixUpperEdge ) {
170  e = __gl_meshConnect( RegionBelow(reg)->eUp->Sym, reg->eUp->Lnext );
171  if (e == NULL) return NULL;
172  if ( !static_FixUpperEdge( reg, e ) ) return NULL;
173  reg = RegionAbove( reg );
174  }
175  return reg;
176 }
177 
179 {
180  GLUvertex *dst = reg->eUp->Dst;
181 
182  /* Find the region above the uppermost edge with the same destination */
183  do {
184  reg = RegionAbove( reg );
185  } while( reg->eUp->Dst == dst );
186  return reg;
187 }
188 
190  ActiveRegion *regAbove,
191  GLUhalfEdge *eNewUp )
192 /*
193  * Add a new active region to the sweep line, *somewhere* below "regAbove"
194  * (according to where the new edge belongs in the sweep-line dictionary).
195  * The upper edge of the new region will be "eNewUp".
196  * Winding number and "inside" flag are not updated.
197  */
198 {
199  ActiveRegion *regNew = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
200  if (regNew == NULL) longjmp(tess->env,1);
201 
202  regNew->eUp = eNewUp;
203  /* __gl_dictListInsertBefore */
204  regNew->nodeUp = dictInsertBefore( tess->dict, regAbove->nodeUp, regNew );
205  if (regNew->nodeUp == NULL) longjmp(tess->env,1);
206  regNew->fixUpperEdge = TOOLS_GLU_FALSE;
207  regNew->sentinel = TOOLS_GLU_FALSE;
208  regNew->dirty = TOOLS_GLU_FALSE;
209 
210  eNewUp->activeRegion = regNew;
211  return regNew;
212 }
213 
214 inline/*static*/ GLUboolean static_IsWindingInside( GLUtesselator *tess, int n )
215 {
216  switch( tess->windingRule ) {
218  return (n & 1);
220  return (n != 0);
222  return (n > 0);
224  return (n < 0);
226  return (n >= 2) || (n <= -2);
227  }
228  /*LINTED*/
229  assert( TOOLS_GLU_FALSE );
230  /*NOTREACHED*/
231  return TOOLS_GLU_FALSE; /* avoid compiler complaints */
232 }
233 
234 
235 inline/*static*/ void static_ComputeWinding( GLUtesselator *tess, ActiveRegion *reg )
236 {
237  reg->windingNumber = RegionAbove(reg)->windingNumber + reg->eUp->winding;
238  reg->inside = static_IsWindingInside( tess, reg->windingNumber );
239 }
240 
241 
242 inline/*static*/ void static_FinishRegion( GLUtesselator *tess, ActiveRegion *reg )
243 /*
244  * Delete a region from the sweep line. This happens when the upper
245  * and lower chains of a region meet (at a vertex on the sweep line).
246  * The "inside" flag is copied to the appropriate mesh face (we could
247  * not do this before -- since the structure of the mesh is always
248  * changing, this face may not have even existed until now).
249  */
250 {
251  GLUhalfEdge *e = reg->eUp;
252  GLUface *f = e->Lface;
253 
254  f->inside = reg->inside;
255  f->anEdge = e; /* optimization for __gl_meshTessellateMonoRegion() */
256  static_DeleteRegion( tess, reg );
257 }
258 
259 
261  ActiveRegion *regFirst, ActiveRegion *regLast )
262 /*
263  * We are given a vertex with one or more left-going edges. All affected
264  * edges should be in the edge dictionary. Starting at regFirst->eUp,
265  * we walk down deleting all regions where both edges have the same
266  * origin vOrg. At the same time we copy the "inside" flag from the
267  * active region to the face, since at this point each face will belong
268  * to at most one region (this was not necessarily true until this point
269  * in the sweep). The walk stops at the region above regLast; if regLast
270  * is NULL we walk as far as possible. At the same time we relink the
271  * mesh if necessary, so that the ordering of edges around vOrg is the
272  * same as in the dictionary.
273  */
274 {
275  ActiveRegion *reg, *regPrev;
276  GLUhalfEdge *e, *ePrev;
277 
278  regPrev = regFirst;
279  ePrev = regFirst->eUp;
280  while( regPrev != regLast ) {
281  regPrev->fixUpperEdge = TOOLS_GLU_FALSE; /* placement was OK */
282  reg = RegionBelow( regPrev );
283  e = reg->eUp;
284  if( e->Org != ePrev->Org ) {
285  if( ! reg->fixUpperEdge ) {
286  /* Remove the last left-going edge. Even though there are no further
287  * edges in the dictionary with this origin, there may be further
288  * such edges in the mesh (if we are adding left edges to a vertex
289  * that has already been processed). Thus it is important to call
290  * FinishRegion rather than just DeleteRegion.
291  */
292  static_FinishRegion( tess, regPrev );
293  break;
294  }
295  /* If the edge below was a temporary edge introduced by
296  * ConnectRightVertex, now is the time to fix it.
297  */
298  e = __gl_meshConnect( ePrev->Lprev, e->Sym );
299  if (e == NULL) longjmp(tess->env,1);
300  if ( !static_FixUpperEdge( reg, e ) ) longjmp(tess->env,1);
301  }
302 
303  /* Relink edges so that ePrev->Onext == e */
304  if( ePrev->Onext != e ) {
305  if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
306  if ( !__gl_meshSplice( ePrev, e ) ) longjmp(tess->env,1);
307  }
308  static_FinishRegion( tess, regPrev ); /* may change reg->eUp */
309  ePrev = reg->eUp;
310  regPrev = reg;
311  }
312  return ePrev;
313 }
314 
315 
316 inline/*static*/ void static_AddRightEdges( GLUtesselator *tess, ActiveRegion *regUp,
317  GLUhalfEdge *eFirst, GLUhalfEdge *eLast, GLUhalfEdge *eTopLeft,
318  GLUboolean cleanUp )
319 /*
320  * Purpose: insert right-going edges into the edge dictionary, and update
321  * winding numbers and mesh connectivity appropriately. All right-going
322  * edges share a common origin vOrg. Edges are inserted CCW starting at
323  * eFirst; the last edge inserted is eLast->Oprev. If vOrg has any
324  * left-going edges already processed, then eTopLeft must be the edge
325  * such that an imaginary upward vertical segment from vOrg would be
326  * contained between eTopLeft->Oprev and eTopLeft; otherwise eTopLeft
327  * should be NULL.
328  */
329 {
330  ActiveRegion *reg, *regPrev;
331  GLUhalfEdge *e, *ePrev;
332  int firstTime = TOOLS_GLU_TRUE;
333 
334  /* Insert the new right-going edges in the dictionary */
335  e = eFirst;
336  do {
337  assert( VertLeq( e->Org, e->Dst ));
338  static_AddRegionBelow( tess, regUp, e->Sym );
339  e = e->Onext;
340  } while ( e != eLast );
341 
342  /* Walk *all* right-going edges from e->Org, in the dictionary order,
343  * updating the winding numbers of each region, and re-linking the mesh
344  * edges to match the dictionary ordering (if necessary).
345  */
346  if( eTopLeft == NULL ) {
347  eTopLeft = RegionBelow( regUp )->eUp->Rprev;
348  }
349  regPrev = regUp;
350  ePrev = eTopLeft;
351  for( ;; ) {
352  reg = RegionBelow( regPrev );
353  e = reg->eUp->Sym;
354  if( e->Org != ePrev->Org ) break;
355 
356  if( e->Onext != ePrev ) {
357  /* Unlink e from its current position, and relink below ePrev */
358  if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
359  if ( !__gl_meshSplice( ePrev->Oprev, e ) ) longjmp(tess->env,1);
360  }
361  /* Compute the winding number and "inside" flag for the new regions */
362  reg->windingNumber = regPrev->windingNumber - e->winding;
363  reg->inside = static_IsWindingInside( tess, reg->windingNumber );
364 
365  /* Check for two outgoing edges with same slope -- process these
366  * before any intersection tests (see example in __gl_computeInterior).
367  */
368  regPrev->dirty = TOOLS_GLU_TRUE;
369  if( ! firstTime && static_CheckForRightSplice( tess, regPrev )) {
370  AddWinding( e, ePrev );
371  static_DeleteRegion( tess, regPrev );
372  if ( !__gl_meshDelete( ePrev ) ) longjmp(tess->env,1);
373  }
374  firstTime = TOOLS_GLU_FALSE;
375  regPrev = reg;
376  ePrev = e;
377  }
378  regPrev->dirty = TOOLS_GLU_TRUE;
379  assert( regPrev->windingNumber - e->winding == reg->windingNumber );
380 
381  if( cleanUp ) {
382  /* Check for intersections between newly adjacent edges. */
383  static_WalkDirtyRegions( tess, regPrev );
384  }
385 }
386 
387 
388 inline/*static*/ void static_CallCombine( GLUtesselator *tess, GLUvertex *isect,
389  void *data[4], GLUfloat weights[4], int needed )
390 {
391  GLUdouble coords[3];
392 
393  /* Copy coord data in case the callback changes it. */
394  coords[0] = isect->coords[0];
395  coords[1] = isect->coords[1];
396  coords[2] = isect->coords[2];
397 
398  isect->data = NULL;
399  CALL_COMBINE_OR_COMBINE_DATA( coords, data, weights, &isect->data );
400  if( isect->data == NULL ) {
401  if( ! needed ) {
402  isect->data = data[0];
403  } else if( ! tess->fatalError ) {
404  /* The only way fatal error is when two edges are found to intersect,
405  * but the user has not provided the callback necessary to handle
406  * generated intersection points.
407  */
409  tess->fatalError = TOOLS_GLU_TRUE;
410  }
411  }
412 }
413 
414 inline/*static*/ void static_SpliceMergeVertices( GLUtesselator *tess, GLUhalfEdge *e1,
415  GLUhalfEdge *e2 )
416 /*
417  * Two vertices with idential coordinates are combined into one.
418  * e1->Org is kept, while e2->Org is discarded.
419  */
420 {
421  void *data[4] = { NULL, NULL, NULL, NULL };
422  GLUfloat weights[4] = { 0.5, 0.5, 0.0, 0.0 };
423 
424  data[0] = e1->Org->data;
425  data[1] = e2->Org->data;
426  static_CallCombine( tess, e1->Org, data, weights, TOOLS_GLU_FALSE );
427  if ( !__gl_meshSplice( e1, e2 ) ) longjmp(tess->env,1);
428 }
429 
430 inline/*static*/ void static_VertexWeights( GLUvertex *isect, GLUvertex *org, GLUvertex *dst,
431  GLUfloat *weights )
432 /*
433  * Find some weights which describe how the intersection vertex is
434  * a linear combination of "org" and "dest". Each of the two edges
435  * which generated "isect" is allocated 50% of the weight; each edge
436  * splits the weight between its org and dst according to the
437  * relative distance to "isect".
438  */
439 {
440  GLUdouble t1 = VertL1dist( org, isect );
441  GLUdouble t2 = VertL1dist( dst, isect );
442 
443  weights[0] = float(0.5 * t2 / (t1 + t2));
444  weights[1] = float(0.5 * t1 / (t1 + t2));
445  isect->coords[0] += weights[0]*org->coords[0] + weights[1]*dst->coords[0];
446  isect->coords[1] += weights[0]*org->coords[1] + weights[1]*dst->coords[1];
447  isect->coords[2] += weights[0]*org->coords[2] + weights[1]*dst->coords[2];
448 }
449 
450 
451 inline/*static*/ void static_GetIntersectData( GLUtesselator *tess, GLUvertex *isect,
452  GLUvertex *orgUp, GLUvertex *dstUp,
453  GLUvertex *orgLo, GLUvertex *dstLo )
454 /*
455  * We've computed a new intersection point, now we need a "data" pointer
456  * from the user so that we can refer to this new vertex in the
457  * rendering callbacks.
458  */
459 {
460  void *data[4];
461  GLUfloat weights[4];
462 
463  data[0] = orgUp->data;
464  data[1] = dstUp->data;
465  data[2] = orgLo->data;
466  data[3] = dstLo->data;
467 
468  isect->coords[0] = isect->coords[1] = isect->coords[2] = 0;
469  static_VertexWeights( isect, orgUp, dstUp, &weights[0] );
470  static_VertexWeights( isect, orgLo, dstLo, &weights[2] );
471 
472  static_CallCombine( tess, isect, data, weights, TOOLS_GLU_TRUE );
473 }
474 
475 inline/*static*/ int static_CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp )
476 /*
477  * Check the upper and lower edge of "regUp", to make sure that the
478  * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which
479  * origin is leftmost).
480  *
481  * The main purpose is to splice right-going edges with the same
482  * dest vertex and nearly identical slopes (ie. we can't distinguish
483  * the slopes numerically). However the splicing can also help us
484  * to recover from numerical errors. For example, suppose at one
485  * point we checked eUp and eLo, and decided that eUp->Org is barely
486  * above eLo. Then later, we split eLo into two edges (eg. from
487  * a splice operation like this one). This can change the result of
488  * our test so that now eUp->Org is incident to eLo, or barely below it.
489  * We must correct this condition to maintain the dictionary invariants.
490  *
491  * One possibility is to check these edges for intersection again
492  * (ie. CheckForIntersect). This is what we do if possible. However
493  * CheckForIntersect requires that tess->event lies between eUp and eLo,
494  * so that it has something to fall back on when the intersection
495  * calculation gives us an unusable answer. So, for those cases where
496  * we can't check for intersection, this routine fixes the problem
497  * by just splicing the offending vertex into the other edge.
498  * This is a guaranteed solution, no matter how degenerate things get.
499  * Basically this is a combinatorial solution to a numerical problem.
500  */
501 {
502  ActiveRegion *regLo = RegionBelow(regUp);
503  GLUhalfEdge *eUp = regUp->eUp;
504  GLUhalfEdge *eLo = regLo->eUp;
505 
506  if( VertLeq( eUp->Org, eLo->Org )) {
507  if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return TOOLS_GLU_FALSE;
508 
509  /* eUp->Org appears to be below eLo */
510  if( ! VertEq( eUp->Org, eLo->Org )) {
511  /* Splice eUp->Org into eLo */
512  if ( __gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
513  if ( !__gl_meshSplice( eUp, eLo->Oprev ) ) longjmp(tess->env,1);
514  regUp->dirty = regLo->dirty = TOOLS_GLU_TRUE;
515 
516  } else if( eUp->Org != eLo->Org ) {
517  /* merge the two vertices, discarding eUp->Org */
518  pqDelete( tess->pq, eUp->Org->pqHandle ); /* __gl_pqSortDelete */
519  static_SpliceMergeVertices( tess, eLo->Oprev, eUp );
520  }
521  } else {
522  if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return TOOLS_GLU_FALSE;
523 
524  /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */
525  RegionAbove(regUp)->dirty = regUp->dirty = TOOLS_GLU_TRUE;
526  if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
527  if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
528  }
529  return TOOLS_GLU_TRUE;
530 }
531 
532 inline/*static*/ int static_CheckForLeftSplice( GLUtesselator *tess, ActiveRegion *regUp )
533 /*
534  * Check the upper and lower edge of "regUp", to make sure that the
535  * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which
536  * destination is rightmost).
537  *
538  * Theoretically, this should always be true. However, splitting an edge
539  * into two pieces can change the results of previous tests. For example,
540  * suppose at one point we checked eUp and eLo, and decided that eUp->Dst
541  * is barely above eLo. Then later, we split eLo into two edges (eg. from
542  * a splice operation like this one). This can change the result of
543  * the test so that now eUp->Dst is incident to eLo, or barely below it.
544  * We must correct this condition to maintain the dictionary invariants
545  * (otherwise new edges might get inserted in the wrong place in the
546  * dictionary, and bad stuff will happen).
547  *
548  * We fix the problem by just splicing the offending vertex into the
549  * other edge.
550  */
551 {
552  ActiveRegion *regLo = RegionBelow(regUp);
553  GLUhalfEdge *eUp = regUp->eUp;
554  GLUhalfEdge *eLo = regLo->eUp;
555  GLUhalfEdge *e;
556 
557  assert( ! VertEq( eUp->Dst, eLo->Dst ));
558 
559  if( VertLeq( eUp->Dst, eLo->Dst )) {
560  if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return TOOLS_GLU_FALSE;
561 
562  /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */
563  RegionAbove(regUp)->dirty = regUp->dirty = TOOLS_GLU_TRUE;
564  e = __gl_meshSplitEdge( eUp );
565  if (e == NULL) longjmp(tess->env,1);
566  if ( !__gl_meshSplice( eLo->Sym, e ) ) longjmp(tess->env,1);
567  e->Lface->inside = regUp->inside;
568  } else {
569  if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return TOOLS_GLU_FALSE;
570 
571  /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */
572  regUp->dirty = regLo->dirty = TOOLS_GLU_TRUE;
573  e = __gl_meshSplitEdge( eLo );
574  if (e == NULL) longjmp(tess->env,1);
575  if ( !__gl_meshSplice( eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1);
576  e->Rface->inside = regUp->inside;
577  }
578  return TOOLS_GLU_TRUE;
579 }
580 
581 
582 inline/*static*/ int static_CheckForIntersect( GLUtesselator *tess, ActiveRegion *regUp )
583 /*
584  * Check the upper and lower edges of the given region to see if
585  * they intersect. If so, create the intersection and add it
586  * to the data structures.
587  *
588  * Returns TOOLS_GLU_TRUE if adding the new intersection resulted in a recursive
589  * call to AddRightEdges(); in this case all "dirty" regions have been
590  * checked for intersections, and possibly regUp has been deleted.
591  */
592 {
593  ActiveRegion *regLo = RegionBelow(regUp);
594  GLUhalfEdge *eUp = regUp->eUp;
595  GLUhalfEdge *eLo = regLo->eUp;
596  GLUvertex *orgUp = eUp->Org;
597  GLUvertex *orgLo = eLo->Org;
598  GLUvertex *dstUp = eUp->Dst;
599  GLUvertex *dstLo = eLo->Dst;
600  GLUdouble tMinUp, tMaxLo;
601  GLUvertex isect, *orgMin;
602  GLUhalfEdge *e;
603 
604  assert( ! VertEq( dstLo, dstUp ));
605  assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 );
606  assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 );
607  assert( orgUp != tess->event && orgLo != tess->event );
608  assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge );
609 
610  if( orgUp == orgLo ) return TOOLS_GLU_FALSE; /* right endpoints are the same */
611 
612  tMinUp = GLU_MIN( orgUp->t, dstUp->t );
613  tMaxLo = GLU_MAX( orgLo->t, dstLo->t );
614  if( tMinUp > tMaxLo ) return TOOLS_GLU_FALSE; /* t ranges do not overlap */
615 
616  if( VertLeq( orgUp, orgLo )) {
617  if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return TOOLS_GLU_FALSE;
618  } else {
619  if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return TOOLS_GLU_FALSE;
620  }
621 
622  /* At this point the edges intersect, at least marginally */
623  DebugEvent( tess );
624 
625  __gl_edgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect );
626  /* The following properties are guaranteed: */
627  assert( GLU_MIN( orgUp->t, dstUp->t ) <= isect.t );
628  assert( isect.t <= GLU_MAX( orgLo->t, dstLo->t ));
629  assert( GLU_MIN( dstLo->s, dstUp->s ) <= isect.s );
630  assert( isect.s <= GLU_MAX( orgLo->s, orgUp->s ));
631 
632  if( VertLeq( &isect, tess->event )) {
633  /* The intersection point lies slightly to the left of the sweep line,
634  * so move it until it''s slightly to the right of the sweep line.
635  * (If we had perfect numerical precision, this would never happen
636  * in the first place). The easiest and safest thing to do is
637  * replace the intersection by tess->event.
638  */
639  isect.s = tess->event->s;
640  isect.t = tess->event->t;
641  }
642  /* Similarly, if the computed intersection lies to the right of the
643  * rightmost origin (which should rarely happen), it can cause
644  * unbelievable inefficiency on sufficiently degenerate inputs.
645  * (If you have the test program, try running test54.d with the
646  * "X zoom" option turned on).
647  */
648  orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo;
649  if( VertLeq( orgMin, &isect )) {
650  isect.s = orgMin->s;
651  isect.t = orgMin->t;
652  }
653 
654  if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) {
655  /* Easy case -- intersection at one of the right endpoints */
656  (void) static_CheckForRightSplice( tess, regUp );
657  return TOOLS_GLU_FALSE;
658  }
659 
660  if( (! VertEq( dstUp, tess->event )
661  && EdgeSign( dstUp, tess->event, &isect ) >= 0)
662  || (! VertEq( dstLo, tess->event )
663  && EdgeSign( dstLo, tess->event, &isect ) <= 0 ))
664  {
665  /* Very unusual -- the new upper or lower edge would pass on the
666  * wrong side of the sweep event, or through it. This can happen
667  * due to very small numerical errors in the intersection calculation.
668  */
669  if( dstLo == tess->event ) {
670  /* Splice dstLo into eUp, and process the new region(s) */
671  if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
672  if ( !__gl_meshSplice( eLo->Sym, eUp ) ) longjmp(tess->env,1);
673  regUp = static_TopLeftRegion( regUp );
674  if (regUp == NULL) longjmp(tess->env,1);
675  eUp = RegionBelow(regUp)->eUp;
676  static_FinishLeftRegions( tess, RegionBelow(regUp), regLo );
677  static_AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TOOLS_GLU_TRUE );
678  return TOOLS_GLU_TRUE;
679  }
680  if( dstUp == tess->event ) {
681  /* Splice dstUp into eLo, and process the new region(s) */
682  if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
683  if ( !__gl_meshSplice( eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1);
684  regLo = regUp;
685  regUp = static_TopRightRegion( regUp );
686  e = RegionBelow(regUp)->eUp->Rprev;
687  regLo->eUp = eLo->Oprev;
688  eLo = static_FinishLeftRegions( tess, regLo, NULL );
689  static_AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TOOLS_GLU_TRUE );
690  return TOOLS_GLU_TRUE;
691  }
692  /* Special case: called from ConnectRightVertex. If either
693  * edge passes on the wrong side of tess->event, split it
694  * (and wait for ConnectRightVertex to splice it appropriately).
695  */
696  if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) {
697  RegionAbove(regUp)->dirty = regUp->dirty = TOOLS_GLU_TRUE;
698  if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
699  eUp->Org->s = tess->event->s;
700  eUp->Org->t = tess->event->t;
701  }
702  if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) {
703  regUp->dirty = regLo->dirty = TOOLS_GLU_TRUE;
704  if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
705  eLo->Org->s = tess->event->s;
706  eLo->Org->t = tess->event->t;
707  }
708  /* leave the rest for ConnectRightVertex */
709  return TOOLS_GLU_FALSE;
710  }
711 
712  /* General case -- split both edges, splice into new vertex.
713  * When we do the splice operation, the order of the arguments is
714  * arbitrary as far as correctness goes. However, when the operation
715  * creates a new face, the work done is proportional to the size of
716  * the new face. We expect the faces in the processed part of
717  * the mesh (ie. eUp->Lface) to be smaller than the faces in the
718  * unprocessed original contours (which will be eLo->Oprev->Lface).
719  */
720  if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
721  if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
722  if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
723  eUp->Org->s = isect.s;
724  eUp->Org->t = isect.t;
725  eUp->Org->pqHandle = pqInsert( tess->pq, eUp->Org ); /* __gl_pqSortInsert */
726  if (eUp->Org->pqHandle == LONG_MAX) {
727  pqDeletePriorityQ(tess->pq); /* __gl_pqSortDeletePriorityQ */
728  tess->pq = NULL;
729  longjmp(tess->env,1);
730  }
731  static_GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo );
732  RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TOOLS_GLU_TRUE;
733  return TOOLS_GLU_FALSE;
734 }
735 
736 inline/*static*/ void static_WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp )
737 /*
738  * When the upper or lower edge of any region changes, the region is
739  * marked "dirty". This routine walks through all the dirty regions
740  * and makes sure that the dictionary invariants are satisfied
741  * (see the comments at the beginning of this file). Of course
742  * new dirty regions can be created as we make changes to restore
743  * the invariants.
744  */
745 {
746  ActiveRegion *regLo = RegionBelow(regUp);
747  GLUhalfEdge *eUp, *eLo;
748 
749  for( ;; ) {
750  /* Find the lowest dirty region (we walk from the bottom up). */
751  while( regLo->dirty ) {
752  regUp = regLo;
753  regLo = RegionBelow(regLo);
754  }
755  if( ! regUp->dirty ) {
756  regLo = regUp;
757  regUp = RegionAbove( regUp );
758  if( regUp == NULL || ! regUp->dirty ) {
759  /* We've walked all the dirty regions */
760  return;
761  }
762  }
763  regUp->dirty = TOOLS_GLU_FALSE;
764  eUp = regUp->eUp;
765  eLo = regLo->eUp;
766 
767  if( eUp->Dst != eLo->Dst ) {
768  /* Check that the edge ordering is obeyed at the Dst vertices. */
769  if( static_CheckForLeftSplice( tess, regUp )) {
770 
771  /* If the upper or lower edge was marked fixUpperEdge, then
772  * we no longer need it (since these edges are needed only for
773  * vertices which otherwise have no right-going edges).
774  */
775  if( regLo->fixUpperEdge ) {
776  static_DeleteRegion( tess, regLo );
777  if ( !__gl_meshDelete( eLo ) ) longjmp(tess->env,1);
778  regLo = RegionBelow( regUp );
779  eLo = regLo->eUp;
780  } else if( regUp->fixUpperEdge ) {
781  static_DeleteRegion( tess, regUp );
782  if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
783  regUp = RegionAbove( regLo );
784  eUp = regUp->eUp;
785  }
786  }
787  }
788  if( eUp->Org != eLo->Org ) {
789  if( eUp->Dst != eLo->Dst
790  && ! regUp->fixUpperEdge && ! regLo->fixUpperEdge
791  && (eUp->Dst == tess->event || eLo->Dst == tess->event) )
792  {
793  /* When all else fails in CheckForIntersect(), it uses tess->event
794  * as the intersection location. To make this possible, it requires
795  * that tess->event lie between the upper and lower edges, and also
796  * that neither of these is marked fixUpperEdge (since in the worst
797  * case it might splice one of these edges into tess->event, and
798  * violate the invariant that fixable edges are the only right-going
799  * edge from their associated vertex).
800  */
801  if( static_CheckForIntersect( tess, regUp )) {
802  /* WalkDirtyRegions() was called recursively; we're done */
803  return;
804  }
805  } else {
806  /* Even though we can't use CheckForIntersect(), the Org vertices
807  * may violate the dictionary edge ordering. Check and correct this.
808  */
809  (void) static_CheckForRightSplice( tess, regUp );
810  }
811  }
812  if( eUp->Org == eLo->Org && eUp->Dst == eLo->Dst ) {
813  /* A degenerate loop consisting of only two edges -- delete it. */
814  AddWinding( eLo, eUp );
815  static_DeleteRegion( tess, regUp );
816  if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
817  regUp = RegionAbove( regLo );
818  }
819  }
820 }
821 
822 
823 inline/*static*/ void static_ConnectRightVertex( GLUtesselator *tess, ActiveRegion *regUp,
824  GLUhalfEdge *eBottomLeft )
825 /*
826  * Purpose: connect a "right" vertex vEvent (one where all edges go left)
827  * to the unprocessed portion of the mesh. Since there are no right-going
828  * edges, two regions (one above vEvent and one below) are being merged
829  * into one. "regUp" is the upper of these two regions.
830  *
831  * There are two reasons for doing this (adding a right-going edge):
832  * - if the two regions being merged are "inside", we must add an edge
833  * to keep them separated (the combined region would not be monotone).
834  * - in any case, we must leave some record of vEvent in the dictionary,
835  * so that we can merge vEvent with features that we have not seen yet.
836  * For example, maybe there is a vertical edge which passes just to
837  * the right of vEvent; we would like to splice vEvent into this edge.
838  *
839  * However, we don't want to connect vEvent to just any vertex. We don''t
840  * want the new edge to cross any other edges; otherwise we will create
841  * intersection vertices even when the input data had no self-intersections.
842  * (This is a bad thing; if the user's input data has no intersections,
843  * we don't want to generate any false intersections ourselves.)
844  *
845  * Our eventual goal is to connect vEvent to the leftmost unprocessed
846  * vertex of the combined region (the union of regUp and regLo).
847  * But because of unseen vertices with all right-going edges, and also
848  * new vertices which may be created by edge intersections, we don''t
849  * know where that leftmost unprocessed vertex is. In the meantime, we
850  * connect vEvent to the closest vertex of either chain, and mark the region
851  * as "fixUpperEdge". This flag says to delete and reconnect this edge
852  * to the next processed vertex on the boundary of the combined region.
853  * Quite possibly the vertex we connected to will turn out to be the
854  * closest one, in which case we won''t need to make any changes.
855  */
856 {
857  GLUhalfEdge *eNew;
858  GLUhalfEdge *eTopLeft = eBottomLeft->Onext;
859  ActiveRegion *regLo = RegionBelow(regUp);
860  GLUhalfEdge *eUp = regUp->eUp;
861  GLUhalfEdge *eLo = regLo->eUp;
862  int degenerate = TOOLS_GLU_FALSE;
863 
864  if( eUp->Dst != eLo->Dst ) {
865  (void) static_CheckForIntersect( tess, regUp );
866  }
867 
868  /* Possible new degeneracies: upper or lower edge of regUp may pass
869  * through vEvent, or may coincide with new intersection vertex
870  */
871  if( VertEq( eUp->Org, tess->event )) {
872  if ( !__gl_meshSplice( eTopLeft->Oprev, eUp ) ) longjmp(tess->env,1);
873  regUp = static_TopLeftRegion( regUp );
874  if (regUp == NULL) longjmp(tess->env,1);
875  eTopLeft = RegionBelow( regUp )->eUp;
876  static_FinishLeftRegions( tess, RegionBelow(regUp), regLo );
877  degenerate = TOOLS_GLU_TRUE;
878  }
879  if( VertEq( eLo->Org, tess->event )) {
880  if ( !__gl_meshSplice( eBottomLeft, eLo->Oprev ) ) longjmp(tess->env,1);
881  eBottomLeft = static_FinishLeftRegions( tess, regLo, NULL );
882  degenerate = TOOLS_GLU_TRUE;
883  }
884  if( degenerate ) {
885  static_AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TOOLS_GLU_TRUE );
886  return;
887  }
888 
889  /* Non-degenerate situation -- need to add a temporary, fixable edge.
890  * Connect to the closer of eLo->Org, eUp->Org.
891  */
892  if( VertLeq( eLo->Org, eUp->Org )) {
893  eNew = eLo->Oprev;
894  } else {
895  eNew = eUp;
896  }
897  eNew = __gl_meshConnect( eBottomLeft->Lprev, eNew );
898  if (eNew == NULL) longjmp(tess->env,1);
899 
900  /* Prevent cleanup, otherwise eNew might disappear before we've even
901  * had a chance to mark it as a temporary edge.
902  */
903  static_AddRightEdges( tess, regUp, eNew, eNew->Onext, eNew->Onext, TOOLS_GLU_FALSE );
905  static_WalkDirtyRegions( tess, regUp );
906 }
907 
908 /* Because vertices at exactly the same location are merged together
909  * before we process the sweep event, some degenerate cases can't occur.
910  * However if someone eventually makes the modifications required to
911  * merge features which are close together, the cases below marked
912  * TOLERANCE_NONZERO will be useful. They were debugged before the
913  * code to merge identical vertices in the main loop was added.
914  */
915 //#define TOLERANCE_NONZERO TOOLS_GLU_FALSE
916 
917 inline/*static*/ void static_ConnectLeftDegenerate( GLUtesselator *tess,
918  ActiveRegion *regUp, GLUvertex *vEvent )
919 /*
920  * The event vertex lies exacty on an already-processed edge or vertex.
921  * Adding the new vertex involves splicing it into the already-processed
922  * part of the mesh.
923  */
924 {
925  GLUhalfEdge *e, *eTopLeft, *eTopRight, *eLast;
926  ActiveRegion *reg;
927 
928  e = regUp->eUp;
929  if( VertEq( e->Org, vEvent )) {
930  /* e->Org is an unprocessed vertex - just combine them, and wait
931  * for e->Org to be pulled from the queue
932  */
933  assert( /*TOLERANCE_NONZERO*/ TOOLS_GLU_FALSE );
934  static_SpliceMergeVertices( tess, e, vEvent->anEdge );
935  return;
936  }
937 
938  if( ! VertEq( e->Dst, vEvent )) {
939  /* General case -- splice vEvent into edge e which passes through it */
940  if (__gl_meshSplitEdge( e->Sym ) == NULL) longjmp(tess->env,1);
941  if( regUp->fixUpperEdge ) {
942  /* This edge was fixable -- delete unused portion of original edge */
943  if ( !__gl_meshDelete( e->Onext ) ) longjmp(tess->env,1);
944  regUp->fixUpperEdge = TOOLS_GLU_FALSE;
945  }
946  if ( !__gl_meshSplice( vEvent->anEdge, e ) ) longjmp(tess->env,1);
947  static_SweepEvent( tess, vEvent ); /* recurse */
948  return;
949  }
950 
951  /* vEvent coincides with e->Dst, which has already been processed.
952  * Splice in the additional right-going edges.
953  */
954  assert( /*TOLERANCE_NONZERO*/ TOOLS_GLU_FALSE );
955  regUp = static_TopRightRegion( regUp );
956  reg = RegionBelow( regUp );
957  eTopRight = reg->eUp->Sym;
958  eTopLeft = eLast = eTopRight->Onext;
959  if( reg->fixUpperEdge ) {
960  /* Here e->Dst has only a single fixable edge going right.
961  * We can delete it since now we have some real right-going edges.
962  */
963  assert( eTopLeft != eTopRight ); /* there are some left edges too */
964  static_DeleteRegion( tess, reg );
965  if ( !__gl_meshDelete( eTopRight ) ) longjmp(tess->env,1);
966  eTopRight = eTopLeft->Oprev;
967  }
968  if ( !__gl_meshSplice( vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1);
969  if( ! EdgeGoesLeft( eTopLeft )) {
970  /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */
971  eTopLeft = NULL;
972  }
973  static_AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TOOLS_GLU_TRUE );
974 }
975 
976 
977 inline/*static*/ void static_ConnectLeftVertex( GLUtesselator *tess, GLUvertex *vEvent )
978 /*
979  * Purpose: connect a "left" vertex (one where both edges go right)
980  * to the processed portion of the mesh. Let R be the active region
981  * containing vEvent, and let U and L be the upper and lower edge
982  * chains of R. There are two possibilities:
983  *
984  * - the normal case: split R into two regions, by connecting vEvent to
985  * the rightmost vertex of U or L lying to the left of the sweep line
986  *
987  * - the degenerate case: if vEvent is close enough to U or L, we
988  * merge vEvent into that edge chain. The subcases are:
989  * - merging with the rightmost vertex of U or L
990  * - merging with the active edge of U or L
991  * - merging with an already-processed portion of U or L
992  */
993 {
994  ActiveRegion *regUp, *regLo, *reg;
995  GLUhalfEdge *eUp, *eLo, *eNew;
996  ActiveRegion tmp;
997 
998  /* assert( vEvent->anEdge->Onext->Onext == vEvent->anEdge ); */
999 
1000  /* Get a pointer to the active region containing vEvent */
1001  tmp.eUp = vEvent->anEdge->Sym;
1002  /* __GL_DICTLISTKEY */ /* __gl_dictListSearch */
1003  regUp = (ActiveRegion *)dictKey( dictSearch( tess->dict, &tmp ));
1004  regLo = RegionBelow( regUp );
1005  eUp = regUp->eUp;
1006  eLo = regLo->eUp;
1007 
1008  /* Try merging with U or L first */
1009  if( EdgeSign( eUp->Dst, vEvent, eUp->Org ) == 0 ) {
1010  static_ConnectLeftDegenerate( tess, regUp, vEvent );
1011  return;
1012  }
1013 
1014  /* Connect vEvent to rightmost processed vertex of either chain.
1015  * e->Dst is the vertex that we will connect to vEvent.
1016  */
1017  reg = VertLeq( eLo->Dst, eUp->Dst ) ? regUp : regLo;
1018 
1019  if( regUp->inside || reg->fixUpperEdge) {
1020  if( reg == regUp ) {
1021  eNew = __gl_meshConnect( vEvent->anEdge->Sym, eUp->Lnext );
1022  if (eNew == NULL) longjmp(tess->env,1);
1023  } else {
1024  GLUhalfEdge *tempHalfEdge= __gl_meshConnect( eLo->Dnext, vEvent->anEdge);
1025  if (tempHalfEdge == NULL) longjmp(tess->env,1);
1026 
1027  eNew = tempHalfEdge->Sym;
1028  }
1029  if( reg->fixUpperEdge ) {
1030  if ( !static_FixUpperEdge( reg, eNew ) ) longjmp(tess->env,1);
1031  } else {
1032  static_ComputeWinding( tess, static_AddRegionBelow( tess, regUp, eNew ));
1033  }
1034  static_SweepEvent( tess, vEvent );
1035  } else {
1036  /* The new vertex is in a region which does not belong to the polygon.
1037  * We don''t need to connect this vertex to the rest of the mesh.
1038  */
1039  static_AddRightEdges( tess, regUp, vEvent->anEdge, vEvent->anEdge, NULL, TOOLS_GLU_TRUE );
1040  }
1041 }
1042 
1043 
1044 inline/*static*/ void static_SweepEvent( GLUtesselator *tess, GLUvertex *vEvent )
1045 /*
1046  * Does everything necessary when the sweep line crosses a vertex.
1047  * Updates the mesh and the edge dictionary.
1048  */
1049 {
1050  ActiveRegion *regUp, *reg;
1051  GLUhalfEdge *e, *eTopLeft, *eBottomLeft;
1052 
1053  tess->event = vEvent; /* for access in EdgeLeq() */
1054  DebugEvent( tess );
1055 
1056  /* Check if this vertex is the right endpoint of an edge that is
1057  * already in the dictionary. In this case we don't need to waste
1058  * time searching for the location to insert new edges.
1059  */
1060  e = vEvent->anEdge;
1061  while( e->activeRegion == NULL ) {
1062  e = e->Onext;
1063  if( e == vEvent->anEdge ) {
1064  /* All edges go right -- not incident to any processed edges */
1065  static_ConnectLeftVertex( tess, vEvent );
1066  return;
1067  }
1068  }
1069 
1070  /* Processing consists of two phases: first we "finish" all the
1071  * active regions where both the upper and lower edges terminate
1072  * at vEvent (ie. vEvent is closing off these regions).
1073  * We mark these faces "inside" or "outside" the polygon according
1074  * to their winding number, and delete the edges from the dictionary.
1075  * This takes care of all the left-going edges from vEvent.
1076  */
1077  regUp = static_TopLeftRegion( e->activeRegion );
1078  if (regUp == NULL) longjmp(tess->env,1);
1079  reg = RegionBelow( regUp );
1080  eTopLeft = reg->eUp;
1081  eBottomLeft = static_FinishLeftRegions( tess, reg, NULL );
1082 
1083  /* Next we process all the right-going edges from vEvent. This
1084  * involves adding the edges to the dictionary, and creating the
1085  * associated "active regions" which record information about the
1086  * regions between adjacent dictionary edges.
1087  */
1088  if( eBottomLeft->Onext == eTopLeft ) {
1089  /* No right-going edges -- add a temporary "fixable" edge */
1090  static_ConnectRightVertex( tess, regUp, eBottomLeft );
1091  } else {
1092  static_AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TOOLS_GLU_TRUE );
1093  }
1094 }
1095 
1096 
1097 /* Make the sentinel coordinates big enough that they will never be
1098  * merged with real input features. (Even with the largest possible
1099  * input contour and the maximum tolerance of 1.0, no merging will be
1100  * done with coordinates larger than 3 * GLU_TESS_MAX_COORD).
1101  */
1102 //#define SENTINEL_COORD (4 * GLU_TESS_MAX_COORD)
1104  static const GLUdouble s_value = 4 * GLU_TESS_MAX_COORD;
1105  return s_value;
1106 }
1107 
1108 inline/*static*/ void static_AddSentinel( GLUtesselator *tess, GLUdouble t )
1109 /*
1110  * We add two sentinel edges above and below all other edges,
1111  * to avoid special cases at the top and bottom.
1112  */
1113 {
1114  GLUhalfEdge *e;
1115  ActiveRegion *reg = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
1116  if (reg == NULL) longjmp(tess->env,1);
1117 
1118  e = __gl_meshMakeEdge( tess->mesh );
1119  if (e == NULL) longjmp(tess->env,1);
1120 
1121  e->Org->s = SENTINEL_COORD();
1122  e->Org->t = t;
1123  e->Dst->s = -SENTINEL_COORD();
1124  e->Dst->t = t;
1125  tess->event = e->Dst; /* initialize it */
1126 
1127  reg->eUp = e;
1128  reg->windingNumber = 0;
1129  reg->inside = TOOLS_GLU_FALSE;
1131  reg->sentinel = TOOLS_GLU_TRUE;
1132  reg->dirty = TOOLS_GLU_FALSE;
1133  reg->nodeUp = dictInsert( tess->dict, reg ); /* __gl_dictListInsertBefore */
1134  if (reg->nodeUp == NULL) longjmp(tess->env,1);
1135 }
1136 
1137 
1138 inline/*static*/ void static_InitEdgeDict( GLUtesselator *tess )
1139 /*
1140  * We maintain an ordering of edge intersections with the sweep line.
1141  * This order is maintained in a dynamic dictionary.
1142  */
1143 {
1144  /* __gl_dictListNewDict */
1145  tess->dict = dictNewDict( tess, (int (*)(void *, DictKey, DictKey)) static_EdgeLeq );
1146  if (tess->dict == NULL) longjmp(tess->env,1);
1147 
1148  static_AddSentinel( tess, -SENTINEL_COORD() );
1150 }
1151 
1152 
1153 inline/*static*/ void static_DoneEdgeDict( GLUtesselator *tess )
1154 {
1155  ActiveRegion *reg;
1156 #ifndef NDEBUG
1157  int fixedEdges = 0;
1158 #endif
1159 
1160  /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
1161  while( (reg = (ActiveRegion *)dictKey( dictMin( tess->dict ))) != NULL ) {
1162  /*
1163  * At the end of all processing, the dictionary should contain
1164  * only the two sentinel edges, plus at most one "fixable" edge
1165  * created by ConnectRightVertex().
1166  */
1167  if( ! reg->sentinel ) {
1168  assert( reg->fixUpperEdge );
1169  //G.Barrand : fix a Coverity diagnostic : begin :
1170  //assert( ++fixedEdges == 1 );
1171 #ifndef NDEBUG
1172  fixedEdges++;
1173 #endif
1174  assert( fixedEdges == 1 );
1175  //G.Barrand : end.
1176  }
1177  assert( reg->windingNumber == 0 );
1178  static_DeleteRegion( tess, reg );
1179 /* __gl_meshDelete( reg->eUp );*/
1180  }
1181  dictDeleteDict( tess->dict ); /* __gl_dictListDeleteDict */
1182 }
1183 
1184 
1185 inline/*static*/ void static_RemoveDegenerateEdges( GLUtesselator *tess )
1186 /*
1187  * Remove zero-length edges, and contours with fewer than 3 vertices.
1188  */
1189 {
1190  GLUhalfEdge *e, *eNext, *eLnext;
1191  GLUhalfEdge *eHead = &tess->mesh->eHead;
1192 
1193  /*LINTED*/
1194  for( e = eHead->next; e != eHead; e = eNext ) {
1195  eNext = e->next;
1196  eLnext = e->Lnext;
1197 
1198  if( VertEq( e->Org, e->Dst ) && e->Lnext->Lnext != e ) {
1199  /* Zero-length edge, contour has at least 3 edges */
1200 
1201  static_SpliceMergeVertices( tess, eLnext, e ); /* deletes e->Org */
1202  if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1); /* e is a self-loop */
1203  e = eLnext;
1204  eLnext = e->Lnext;
1205  }
1206  if( eLnext->Lnext == e ) {
1207  /* Degenerate contour (one or two edges) */
1208 
1209  if( eLnext != e ) {
1210  if( eLnext == eNext || eLnext == eNext->Sym ) { eNext = eNext->next; }
1211  if ( !__gl_meshDelete( eLnext ) ) longjmp(tess->env,1);
1212  }
1213  if( e == eNext || e == eNext->Sym ) { eNext = eNext->next; }
1214  if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1);
1215  }
1216  }
1217 }
1218 
1219 inline/*static*/ int static_InitPriorityQ( GLUtesselator *tess )
1220 /*
1221  * Insert all vertices into the priority queue which determines the
1222  * order in which vertices cross the sweep line.
1223  */
1224 {
1225  PriorityQ *pq;
1226  GLUvertex *v, *vHead;
1227 
1228  /* __gl_pqSortNewPriorityQ */
1229  pq = tess->pq = pqNewPriorityQ( (int (*)(PQkey, PQkey)) __gl_vertLeq );
1230  if (pq == NULL) return 0;
1231 
1232  vHead = &tess->mesh->vHead;
1233  for( v = vHead->next; v != vHead; v = v->next ) {
1234  v->pqHandle = pqInsert( pq, v ); /* __gl_pqSortInsert */
1235  if (v->pqHandle == LONG_MAX) break;
1236  }
1237  if (v != vHead || !pqInit( pq ) ) { /* __gl_pqSortInit */
1238  pqDeletePriorityQ(tess->pq); /* __gl_pqSortDeletePriorityQ */
1239  tess->pq = NULL;
1240  return 0;
1241  }
1242 
1243  return 1;
1244 }
1245 
1246 
1247 inline/*static*/ void static_DonePriorityQ( GLUtesselator *tess )
1248 {
1249  pqDeletePriorityQ( tess->pq ); /* __gl_pqSortDeletePriorityQ */
1250 }
1251 
1252 
1253 inline/*static*/ int static_RemoveDegenerateFaces( GLUmesh *mesh )
1254 /*
1255  * Delete any degenerate faces with only two edges. WalkDirtyRegions()
1256  * will catch almost all of these, but it won't catch degenerate faces
1257  * produced by splice operations on already-processed edges.
1258  * The two places this can happen are in FinishLeftRegions(), when
1259  * we splice in a "temporary" edge produced by ConnectRightVertex(),
1260  * and in CheckForLeftSplice(), where we splice already-processed
1261  * edges to ensure that our dictionary invariants are not violated
1262  * by numerical errors.
1263  *
1264  * In both these cases it is *very* dangerous to delete the offending
1265  * edge at the time, since one of the routines further up the stack
1266  * will sometimes be keeping a pointer to that edge.
1267  */
1268 {
1269  GLUface *f, *fNext;
1270  GLUhalfEdge *e;
1271 
1272  /*LINTED*/
1273  for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) {
1274  fNext = f->next;
1275  e = f->anEdge;
1276  assert( e->Lnext != e );
1277 
1278  if( e->Lnext->Lnext == e ) {
1279  /* A face with only two edges */
1280  AddWinding( e->Onext, e );
1281  if ( !__gl_meshDelete( e ) ) return 0;
1282  }
1283  }
1284  return 1;
1285 }
1286 
1288 /*
1289  * __gl_computeInterior( tess ) computes the planar arrangement specified
1290  * by the given contours, and further subdivides this arrangement
1291  * into regions. Each region is marked "inside" if it belongs
1292  * to the polygon, according to the rule given by tess->windingRule.
1293  * Each interior region is guaranteed be monotone.
1294  */
1295 {
1296  GLUvertex *v, *vNext;
1297 
1298  tess->fatalError = TOOLS_GLU_FALSE;
1299 
1300  /* Each vertex defines an event for our sweep line. Start by inserting
1301  * all the vertices in a priority queue. Events are processed in
1302  * lexicographic order, ie.
1303  *
1304  * e1 < e2 iff e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y)
1305  */
1307  if ( !static_InitPriorityQ( tess ) ) return 0; /* if error */
1308  static_InitEdgeDict( tess );
1309 
1310  /* __gl_pqSortExtractMin */
1311  while( (v = (GLUvertex *)pqExtractMin( tess->pq )) != NULL ) {
1312  for( ;; ) {
1313  vNext = (GLUvertex *)pqMinimum( tess->pq ); /* __gl_pqSortMinimum */
1314  if( vNext == NULL || ! VertEq( vNext, v )) break;
1315 
1316  /* Merge together all vertices at exactly the same location.
1317  * This is more efficient than processing them one at a time,
1318  * simplifies the code (see ConnectLeftDegenerate), and is also
1319  * important for correct handling of certain degenerate cases.
1320  * For example, suppose there are two identical edges A and B
1321  * that belong to different contours (so without this code they would
1322  * be processed by separate sweep events). Suppose another edge C
1323  * crosses A and B from above. When A is processed, we split it
1324  * at its intersection point with C. However this also splits C,
1325  * so when we insert B we may compute a slightly different
1326  * intersection point. This might leave two edges with a small
1327  * gap between them. This kind of error is especially obvious
1328  * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY).
1329  */
1330  vNext = (GLUvertex *)pqExtractMin( tess->pq ); /* __gl_pqSortExtractMin*/
1331  static_SpliceMergeVertices( tess, v->anEdge, vNext->anEdge );
1332  }
1333  static_SweepEvent( tess, v );
1334  }
1335 
1336  /* Set tess->event for debugging purposes */
1337  /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
1338  tess->event = ((ActiveRegion *) dictKey( dictMin( tess->dict )))->eUp->Org;
1339  DebugEvent( tess );
1340  static_DoneEdgeDict( tess );
1341  static_DonePriorityQ( tess );
1342 
1343  if ( !static_RemoveDegenerateFaces( tess->mesh ) ) return 0;
1344  __gl_meshCheckMesh( tess->mesh );
1345 
1346  return 1;
1347 }
1348 
1349 #endif
static_AddRegionBelow
inline ActiveRegion * static_AddRegionBelow(GLUtesselator *tess, ActiveRegion *regAbove, GLUhalfEdge *eNewUp)
Definition: sweep:189
RegionAbove
#define RegionAbove(r)
Definition: sweep:31
__gl_meshSplitEdge
GLUhalfEdge * __gl_meshSplitEdge(GLUhalfEdge *eOrg)
Definition: mesh:654
GLUmesh::fHead
GLUface fHead
Definition: mesh:133
static_DeleteRegion
inline void static_DeleteRegion(GLUtesselator *tess, ActiveRegion *reg)
Definition: sweep:127
memFree
#define memFree
Definition: memalloc:42
GLU_TESS_WINDING_POSITIVE
#define GLU_TESS_WINDING_POSITIVE
Definition: _glu:39
ActiveRegion::fixUpperEdge
GLUboolean fixUpperEdge
Definition: sweep:25
ActiveRegion::inside
GLUboolean inside
Definition: sweep:20
static_SpliceMergeVertices
inline void static_SpliceMergeVertices(GLUtesselator *tess, GLUhalfEdge *e1, GLUhalfEdge *e2)
Definition: sweep:414
GLUmesh::eHead
GLUhalfEdge eHead
Definition: mesh:134
GLUvertex::s
GLUdouble s
Definition: mesh:90
__gl_meshConnect
GLUhalfEdge * __gl_meshConnect(GLUhalfEdge *eOrg, GLUhalfEdge *eDst)
Definition: mesh:687
GLU_MAX
#define GLU_MAX(x, y)
Definition: _glu:73
GLUvertex::next
GLUvertex * next
Definition: mesh:83
static_ComputeWinding
inline void static_ComputeWinding(GLUtesselator *tess, ActiveRegion *reg)
Definition: sweep:235
static_RemoveDegenerateEdges
inline void static_RemoveDegenerateEdges(GLUtesselator *tess)
Definition: sweep:1185
__gl_computeInterior
int __gl_computeInterior(GLUtesselator *tess)
Definition: sweep:1287
pqExtractMin
PQkey pqExtractMin(PriorityQ *pq)
Definition: priorityq:240
GLUmesh
Definition: mesh:131
priorityq
ActiveRegion::nodeUp
DictNode * nodeUp
Definition: sweep:17
CALL_COMBINE_OR_COMBINE_DATA
#define CALL_COMBINE_OR_COMBINE_DATA(a, b, c, d)
Definition: _tess:123
GLUmesh::vHead
GLUvertex vHead
Definition: mesh:132
pqInsert
PQhandle pqInsert(PriorityQ *pq, PQkey keyNew)
Definition: priorityq:192
__gl_meshSplice
int __gl_meshSplice(GLUhalfEdge *eOrg, GLUhalfEdge *eDst)
Definition: mesh:504
GLUtesselator::dict
Dict * dict
Definition: _tess:51
static_CallCombine
inline void static_CallCombine(GLUtesselator *tess, GLUvertex *isect, void *data[4], GLUfloat weights[4], int needed)
Definition: sweep:388
GLUhalfEdge::Lnext
GLUhalfEdge * Lnext
Definition: mesh:110
static_TopRightRegion
inline ActiveRegion * static_TopRightRegion(ActiveRegion *reg)
Definition: sweep:178
memAlloc
#define memAlloc
Definition: memalloc:40
dictDeleteDict
void dictDeleteDict(Dict *dict)
Definition: dict:75
static_InitEdgeDict
inline void static_InitEdgeDict(GLUtesselator *tess)
Definition: sweep:1138
dictKey
#define dictKey(n)
Definition: dict:20
dictSearch
DictNode * dictSearch(Dict *dict, DictKey key)
Definition: dict:116
GLUhalfEdge
Definition: mesh:106
GLUvertex::data
void * data
Definition: mesh:86
dict
GLUhalfEdge::Sym
GLUhalfEdge * Sym
Definition: mesh:108
static_DonePriorityQ
inline void static_DonePriorityQ(GLUtesselator *tess)
Definition: sweep:1247
GLU_TESS_WINDING_ABS_GEQ_TWO
#define GLU_TESS_WINDING_ABS_GEQ_TWO
Definition: _glu:138
pqInit
void pqInit(PriorityQ *pq)
Definition: priorityq:178
PQkey
void * PQkey
Definition: priorityq:55
dictNewDict
Dict * dictNewDict(void *frame, int(*leq)(void *frame, DictKey key1, DictKey key2))
inlined C code : ///////////////////////////////////
Definition: dict:57
GLUhalfEdge::winding
int winding
Definition: mesh:116
TOOLS_GLU_TRUE
#define TOOLS_GLU_TRUE
Definition: _glu:82
GLUhalfEdge::activeRegion
ActiveRegion * activeRegion
Definition: mesh:115
GLUhalfEdge::next
GLUhalfEdge * next
Definition: mesh:107
__gl_vertLeq
int __gl_vertLeq(GLUvertex *u, GLUvertex *v)
inlined C code : ///////////////////////////////////
Definition: geom:33
static_TopLeftRegion
inline ActiveRegion * static_TopLeftRegion(ActiveRegion *reg)
Definition: sweep:156
ActiveRegion::dirty
GLUboolean dirty
Definition: sweep:22
GLUdouble
double GLUdouble
Definition: _glu:16
DictKey
void * DictKey
Definition: dict:26
static_WalkDirtyRegions
inline void static_WalkDirtyRegions(GLUtesselator *tess, ActiveRegion *regUp)
Definition: sweep:736
AddWinding
#define AddWinding(eDst, eSrc)
Definition: sweep:76
EdgeEval
#define EdgeEval(u, v, w)
Definition: geom:11
GLUtesselator::mesh
GLUmesh * mesh
Definition: _tess:34
static_CheckForRightSplice
inline int static_CheckForRightSplice(GLUtesselator *tess, ActiveRegion *regUp)
Definition: sweep:475
GLU_TESS_WINDING_NEGATIVE
#define GLU_TESS_WINDING_NEGATIVE
Definition: _glu:40
GLUhalfEdge::Onext
GLUhalfEdge * Onext
Definition: mesh:109
pqDelete
void pqDelete(PriorityQ *pq, PQhandle hCurr)
Definition: priorityq:263
VertEq
#define VertEq(u, v)
Definition: geom:8
GLUfloat
float GLUfloat
Definition: _glu:19
CALL_ERROR_OR_ERROR_DATA
#define CALL_ERROR_OR_ERROR_DATA(a)
Definition: _tess:128
ActiveRegion::eUp
GLUhalfEdge * eUp
Definition: sweep:16
ActiveRegion
Definition: sweep:15
__gl_edgeIntersect
void __gl_edgeIntersect(GLUvertex *o1, GLUvertex *d1, GLUvertex *o2, GLUvertex *d2, GLUvertex *v)
Definition: geom:178
TOOLS_GLU_FALSE
#define TOOLS_GLU_FALSE
Definition: _glu:81
GLU_TESS_WINDING_ODD
#define GLU_TESS_WINDING_ODD
Definition: _glu:38
static_FinishLeftRegions
inline GLUhalfEdge * static_FinishLeftRegions(GLUtesselator *tess, ActiveRegion *regFirst, ActiveRegion *regLast)
Definition: sweep:260
GLUtesselator::env
jmp_buf env
Definition: _tess:89
static_VertexWeights
inline void static_VertexWeights(GLUvertex *isect, GLUvertex *org, GLUvertex *dst, GLUfloat *weights)
Definition: sweep:430
GLUtesselator
Definition: _tess:27
GLUtesselator::windingRule
GLUenum windingRule
Definition: _tess:48
GLUvertex::anEdge
GLUhalfEdge * anEdge
Definition: mesh:85
static_EdgeLeq
inline int static_EdgeLeq(GLUtesselator *tess, ActiveRegion *reg1, ActiveRegion *reg2)
Definition: sweep:83
static_CheckForLeftSplice
inline int static_CheckForLeftSplice(GLUtesselator *tess, ActiveRegion *regUp)
Definition: sweep:532
dictInsert
#define dictInsert(dict, key)
Definition: dict:16
GLUvertex
Definition: mesh:82
static_AddRightEdges
inline void static_AddRightEdges(GLUtesselator *tess, ActiveRegion *regUp, GLUhalfEdge *eFirst, GLUhalfEdge *eLast, GLUhalfEdge *eTopLeft, GLUboolean cleanUp)
Definition: sweep:316
static_CheckForIntersect
inline int static_CheckForIntersect(GLUtesselator *tess, ActiveRegion *regUp)
Definition: sweep:582
__gl_meshDelete
int __gl_meshDelete(GLUhalfEdge *eDel)
Definition: mesh:560
EdgeSign
#define EdgeSign(u, v, w)
Definition: geom:12
GLUboolean
unsigned char GLUboolean
Definition: _glu:18
static_IsWindingInside
inline GLUboolean static_IsWindingInside(GLUtesselator *tess, int n)
Definition: sweep:214
GLUvertex::coords
GLUdouble coords[3]
Definition: mesh:89
static_ConnectLeftVertex
inline void static_ConnectLeftVertex(GLUtesselator *tess, GLUvertex *vEvent)
Definition: sweep:977
GLUface::inside
GLUboolean inside
Definition: mesh:103
GLUtesselator::event
GLUvertex * event
Definition: _tess:53
RegionBelow
#define RegionBelow(r)
Definition: sweep:30
GLUtesselator::fatalError
GLUboolean fatalError
Definition: _tess:49
GLU_MIN
#define GLU_MIN(x, y)
Definition: _glu:72
__gl_meshMakeEdge
GLUhalfEdge * __gl_meshMakeEdge(GLUmesh *mesh)
Definition: mesh:451
DictNode
Definition: dict:39
pqDeletePriorityQ
void pqDeletePriorityQ(PriorityQ *pq)
Definition: priorityq:117
GLUtesselator::pq
PriorityQ * pq
Definition: _tess:52
mesh
static_ConnectRightVertex
inline void static_ConnectRightVertex(GLUtesselator *tess, ActiveRegion *regUp, GLUhalfEdge *eBottomLeft)
Definition: sweep:823
GLUhalfEdge::Lface
GLUface * Lface
Definition: mesh:112
GLUvertex::t
GLUdouble t
Definition: mesh:90
static_AddSentinel
inline void static_AddSentinel(GLUtesselator *tess, GLUdouble t)
Definition: sweep:1108
GLUface
Definition: mesh:94
SENTINEL_COORD
GLUdouble SENTINEL_COORD()
Definition: sweep:1103
VertL1dist
#define VertL1dist(u, v)
Definition: geom:25
GLUhalfEdge::Org
GLUvertex * Org
Definition: mesh:111
GLUface::next
GLUface * next
Definition: mesh:95
pqMinimum
PQkey pqMinimum(PriorityQ *pq)
Definition: priorityq:533
dictDelete
void dictDelete(Dict *, DictNode *node)
Definition: dict:109
static_GetIntersectData
inline void static_GetIntersectData(GLUtesselator *tess, GLUvertex *isect, GLUvertex *orgUp, GLUvertex *dstUp, GLUvertex *orgLo, GLUvertex *dstLo)
Definition: sweep:451
ActiveRegion::windingNumber
int windingNumber
Definition: sweep:18
static_DoneEdgeDict
inline void static_DoneEdgeDict(GLUtesselator *tess)
Definition: sweep:1153
DebugEvent
#define DebugEvent(tess)
inlined C code : ///////////////////////////////////
Definition: sweep:41
static_InitPriorityQ
inline int static_InitPriorityQ(GLUtesselator *tess)
Definition: sweep:1219
geom
dictMin
#define dictMin(d)
Definition: dict:23
static_FixUpperEdge
inline int static_FixUpperEdge(ActiveRegion *reg, GLUhalfEdge *newEdge)
Definition: sweep:142
GLUvertex::pqHandle
long pqHandle
Definition: mesh:91
pqNewPriorityQ
PriorityQ * pqNewPriorityQ(int(*leq)(PQkey key1, PQkey key2))
Definition: priorityq:87
PriorityQ
Definition: priorityq:62
dictInsertBefore
DictNode * dictInsertBefore(Dict *dict, DictNode *node, DictKey key)
Definition: dict:90
static_ConnectLeftDegenerate
inline void static_ConnectLeftDegenerate(GLUtesselator *tess, ActiveRegion *regUp, GLUvertex *vEvent)
Definition: sweep:917
_tess
VertLeq
#define VertLeq(u, v)
Definition: geom:9
EdgeGoesLeft
#define EdgeGoesLeft(e)
Definition: geom:22
static_FinishRegion
inline void static_FinishRegion(GLUtesselator *tess, ActiveRegion *reg)
Definition: sweep:242
static_RemoveDegenerateFaces
inline int static_RemoveDegenerateFaces(GLUmesh *mesh)
Definition: sweep:1253
GLU_TESS_WINDING_NONZERO
#define GLU_TESS_WINDING_NONZERO
Definition: _glu:137
ActiveRegion::sentinel
GLUboolean sentinel
Definition: sweep:21
__gl_meshCheckMesh
void __gl_meshCheckMesh(GLUmesh *mesh)
Definition: mesh:917
GLU_TESS_NEED_COMBINE_CALLBACK
#define GLU_TESS_NEED_COMBINE_CALLBACK
Definition: _glu:134
static_SweepEvent
inline void static_SweepEvent(GLUtesselator *tess, GLUvertex *vEvent)
Definition: sweep:1044
GLUface::anEdge
GLUhalfEdge * anEdge
Definition: mesh:97
GLU_TESS_MAX_COORD
#define GLU_TESS_MAX_COORD
Definition: _glu:90